IDEAL Software

Programmer's Manual v4.00

VIRTUAL PRINT ENGINE ’

Programmer’s
Manual

Programmer's Manual
Virtual Print Engine

Copyright & 2008 IDEAL Software®. All rights reserved.

www.idealsoftware.com
support@idealsoftware.com

Information in this document is subject to change without notice and does not represent a commitment on

the part of IDEAL Software. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in accordance with the
terms of the agreement. It is against the law to copy the software on any medium except as specifically allowed
in the license or nondisclosure agreement. Noo part of this documentation may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying and recording, for any

purpose without the prior express written permission of IDEAL Software.

IDEAL Software, the IDEAL Software logo, DYCODOC and Virtual Print Engine

are registered trademarks, FieldStudio is a trademark of IDEAL Software, Neuss/Germany.
Microsoft, MS, Windows, Visual C++, Visual Basic, Visual FoxPro, MFC, ActiveX and .NET are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries.
Borland, the Borland Logo, C++Builder and Delphi are trademarks or registered trademarks of Borland
Software Corporation in the United States and other countries.
Adobe, Acrobat and PostScript are registered trademarks of Adobe Systems Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Contents

1 Installation 1
1.1 SYSIEM REQUITEMIENTSeiieeitie ittt ettt ettt bbbt e et e bt ab et e sb b e et b e et e e et e e sbnearnesrnea 1
1.2 WINAOWS INSTAHTATIONeveiiiiiiiie ettt sttt sneearnen 2

1.2.1 Installing Different Versions Or EAItIONScccuoiiiiiiiiiiiiiiiee s 3
1.2.2 How is the Windows System Directory affected by SETUP?.......c.ccooviiiiiiiiiiiiiceeeeee 3
1.2.3 Installing the VPE .NET COMPONENTc.vtiiiiiiiiiiiiiiit ittt 4
1.2.4 Installing the VPE = ACHVEXccuiiiiiiiiiiieee ettt 4
1.2.5 Installing the VPE-VCL for Delphi / C++ BUIlder..........ccoiiiiiiiiiiiiic e 5
1.3 NON-WiINAOWS INSTAITALIONoiiiiiiiiiiciic et sree 7
1.3.1 Uninstalling VPE on Non-Windows PIatforms............ccooiiiiiiiiiccceee e 8

2 Getting Started 9
2.1 VPE CoNntrol (NET / ACHVEX / WCL) ...ccuviiiiiiiiiiit ettt 9
2.2 V/PE DLL ON WINGOWS ...ttt sttt ettt ettt ettt ettt ettt et e bt e nre et 10
2.3 VPE Shared ODJECT / DYooiiiiiieiieee et 11

3 Introduction 12
3L OVEBIVIBW. ...tttk b e ke b bkt e ke ekt e b e e e bt oAbt e e bt e bt e e bt e bt e bt e nbe e bt e e e e nne e 12

3.1.1 VPE In Short (Al EItIONS)cc.viiiiiiiieiieiiie it 13
3.1.2 ComMUNILY EQITION ..cveiiiiiiiiiiie ettt 14
3. 1.3 ENNANCET EQITIONeeiiiiieiiee ettt ettt nnre 15
3.1.4 Professional EQITIONcouiiiiiiiiiiiie ittt 16
3. 1.5 ENErprise EAItION.c.viiiiiiiiiiiie et e 17
3.1.6 INTEraCtive EdITIONccviiiiiie ittt 17
3.2 The DemO VPEDEMOLEXE........cciiiiiiieiiii ettt sttt 18

4 Programming Techniques 19

AL INEFOTUCTION ...ttt bbbkttt ek e kb e ek b e e b e e e b et e b b e ek b e ebe e et e e abeeabneabnenbee s 19
4.1.1 Note on Source Codes Shipped With VPEccciiiiiiiiii s 19
41,2 BASICS ...ttt ettt ettt R Rt R ARt R bR bbbt 19

4.2 Using the VPE DLL / Shared ODJECE......c.viiiiiiiiiiiie ittt 20

A3 PIBVIBW ...tttk ettt b bbbtk k ekt E bRt b et R R e ke e R et R e e R e e b b et e e b r e b e e abnenree s 22
4.3.1 The GUI IS themeaDI.........oiiiiie s 25

4.4 The ODJECt-OrIENTEd STYIEottt sr e sbrenree s 27
4.4.1 VPE knows the fOlloWIng ODJECES:cvviiiiiiiiiiiii s 27
4.4.2 Te INNEITANCE OFTET ISviitiiiiiiiiiiciee ittt 28
4.4.3 Assigning Styles and Properties t0 ODJECTS.ciiviiuiiiiiiiiiicie s 29

4.5 DYNAMIC POSITIONINGeeittiitiiitie ittt ettt ettt et e bbb e e st e et e annesree s 30
4.5.1 The Basic Conception - Absolute COOTdINALES............eoviiiiiiiiiiiiieie e 30
4.5.2 DYNAMIC POSITIONINGvettiiiiieiieeieeit sttt 31
4.5.3 DYNAIMIC TOXE. ...t itteitteittt ettt ettt ettt bbbt h bttt s e a bt s bt sb e nb e s b b enns 32
A.5.4 PGB MAIGINSeeieeiteeitie ettt e et st sttt 35
4.5.5 Advanced DYnamiC POSITIONINGuiuiiuiiiiiiiiieiieeie e 38
4.5.6 RENEING ODJECESveiveiiiiiitieeiee ettt 39
4.5.7 AULOMALIC TEXE BIEAK ...ccueiiiiiiiiiiii s 41

4.6 Rotation of Text, Images and BarCOUEScoiuieiuieiiieiie ettt ee et e aneeeen 43

e [(0 £ OO PO TP O PO O PP PP PP O PP PUPTPPPTPURTPURPUROPN 45
A7 0 SCAING ..ttt bbbttt 47
4.7.2 Image Type 1dentifiCatiON.........c.ooiiiiiiiiiii it 48
A.7.31TMAGE CACNE ... 48
4.7.4 Using BLOB's or other Temporary Images / Memory Streamscccocvveveeieiieiieeneenneannes 50
4.7.5 SCale-10-Gray TECANOIOGYccutiuiiiiiiiaiii ettt 51
A.7.8 REIMAIKS. ...ttt 52

48 RTF - RICh TEXE FOrMAL ..o 53

4.8.1 FEAtUreS OF VPE ... 53

4.8.2 INtrodUCHION 10 RTF....cuiiiiiiiii ittt 55
4.8.3 Controlling RTF from VPE — “EaSy RTFc.oiiiiiiiii s 57
4.8.4 OVerloading MECHANISIM ...ttt 62
4.8.5 RTF DEMO SOUICE COUR.....cuviiuiiiiiiiiiiaiiteie ettt 62
4.8.6 Some Notes ADOUL VPE and RTF ..ottt 63
4.8.7 RTF Properties proCessed DY VPEcouiiiiiiiiiiiiiiteie it 64
4.9 BArCOUES (1D) ...ieeiiieitieiiee itttk b bbbtk ek e kbbb e b bt ekt e btk bbbt b et et et e e b e abrenree s 68
4.9.1 C0UE 39 (B 0T 9) .iiiiiiiiiiiiii ettt 70
4.9.2 Code 39 extended (3 0F 9 eXLENE)ocviiiiiiiiiiiii s 71
4.9.3 C0UE 93 (9 0 B) ..ttt 72
4.9.4 COUE 93 EXIENAEHeeviiiieietee ettt ettt 73
4.9.5C00de 128 and EAN 128......ccooiiiiiiiiiieeeee et 74
4.9.6 Code 2 OF 5 INTEIIEAVEM.ccuiiiiiiiiiiiteeteee bbb 76
4.9.7 C0odE 2 OF 5 INAUSTIIALcvveiiiiiieici s 77
4.9.8 COUE 2 OF 5 IMALIIX ...ttt bbbttt 78
4.9.9 EAN - (European-Article-NUMDEIING)ccviiiiiiiiiiiiiiieceeie s 79
4.9.10 EAN-2 and EAN-5 Add-On Codes for EAN and UPC...........ccccoviiiiiiiiiiiicceeceees 83
4.9.11 UPC (UnNiversal ProduCt COOR)ciuiiuiiiiiiiiiiaiiieiteee ettt 84
49,02 COUADAN. ...ttt 86
A.9. 13 COUB 11ttt 87
4.9. 14 MST BAICOUE ...ttt ettt ettt ettt nb e 88
A.9.15 TEIBPEN-A ..ttt 89
4.9.16 Postnet - Postal Numeric Encoding TeChniqQUecoviiiiiiiiiiiicc 90
4.9.17 RMA4SCC - Royal Mail 4 State CUSIOMEr COURvviviiiiiiiiiiiiieieeie s 91
4.9.18 ISBN (International Standard BOOK NUMDET)ccuviiiiiiiiiiiiiiieiccieceeee s 92
4.9.19 1dentCOd DEULSCNE POSE.......ccuviiiiiiiiiieit ittt 93
4.9.20 Leitcode DeULSCRE POSE AGoiiiiiiiiiiiiite ettt 95
4.9.21 PZN (Pharma Zentral NUMMEr) COORccviiiiiiiiiiiiieiecie it 97
4.10 BArCOUES (2D) ...veeieeiteeiieeeiee ettt ettt sttt b ekt ek bbbk b e kbt ek btk et kbbbt bbb e e et e e b nearnenree s 98
4.10.1 DALA IMIBEFIX ..ttt 99
4.10.2 MAXICOER ...ttt ettt ettt b e bbbt e sttt et e bt et e e bt e bt e nbe e ee e 100
A.L0.3 PDFALT ..ttt bbbt bbbt bbbttt b et b 101
A.L0.4 AZEEC. ...ttt E e h Rt bRt Rt Rt bt bttt et e bt re e 102
A LT FOIMEIRIAS ...ttt ettt b ettt e b et 103
4.11.1 USING FOMEIEIASoviiiiieiee ettt 104
4.11.2 USing AREIMNALIVE DIVIAEISeoiiiiiiieiiieitie ettt 105
4.12 Important Note About Pens, Lines, Frames, Circles and EHPSeS..........cocoevviiiiininiieniceiiieien, 107
4.13 MUILIPAGE DOCUMENTS. ...ttt ettt ettt ettt ettt et et e beenbe e 108
4.13.1 Generating a Document while the Preview i OPencccooiiieiiiiiciie i 108
4.13.2 HEAders and FOOLEISoiiiiiieitie ittt ettt ettt ettt ettt e nbe et ee e 109
A. 14 MUIE-TRFEAAING ...t b ettt ettt e bt ettt e bt e b 112
4.15 Embedded FIag-SetliNg.........cueiriiiiiiiiiieeie ettt 113
4.16 Predefined Color CONSLANTS.iitiiiiiiiiiiee ettt et ne e 117
A.17 PIINEET CONEIOL. ...ttt ettt b ettt ettt e be e b 118
A 17,1 PHINTEE SEBUPD. ...ttt ittt ettt etttk b e bt e bttt e et e bt e bt e nb e e nbeenbeenbe e 118
4.17.2 Sophisticated Device CONTIOL...........oiiiiiiiiiiie e 120
4.18 Printing From A Service Like IS (Internet Information Server)..........cccooeiveiiiniinienienienen 120
AL WY SIWY G ...ttt bbbt b ettt ettt et et et 121
4.20 POSItioNING ON The PIINTEEc.viiiiiiii bbbttt 121
4.20.1 Correcting Possible Misaligned Printer OUIPUL............coviieiiiiienienienie e 122
4.21 Fonts and FONt HaNAIiNG..........ooviiiiiiiiii e 123
4.21.1 Base 14 POSt SCIPL FONES ..ottt ettt et nbe e 124
4.21.2 True-Type / OPENTYPE FONES....ccuviiiiiieiiee ittt 125
4.21.3 FONT SUDSTITUTION ...ttt ettt ettt et 126
4.21.4 Making a Decision, Which Type of FONt {0 USecccoiiiiiiiiiiicieeercee e 127
4.22 \/PE DOCUMENT FIIES ...ttt ettt et 128
4.22.1 Assembling VPE DOCUMENT FIlESooiiiiiiiiiiiciee e 128
4.22.2 Editing VPE DOCUMENT FIlESc.viiiiiiiiieiie e 129
4.22.3 MEIMOTY SIIEAMISivieiuiiiiteie sttt sttt ettt ettt e s be e s e e et e entn e e sen e sane s 129
4.22.4 Pictures and VPE DOCUMENE FIIES.........coiiiiiiiiiie et 130
4.22.5 UDOQO's and VPE DOCUMENE FIIEScc.eiiiiiiiiieiie e 130

4.22.6 ON-Disk DOCUMENT FIIES ... 131

4.23 VPE View: The DOCUMENE VIBWETccoeiiiiiieeeeeeeeeeeeeeeeeeeee e 132

4.23.1 Faxing Documents with the MailDoc() Method.............cooeiiiiiiiiiniciie e 133
A.24 STANCANTS. ...ttt bbbt bt bbbt et re e 133
5 dycodoc Template Processing 134
5.1 dycodoC TeMPIALE PrOCESSINGeiuviiiiiiiieiiiiaiie ettt 134
5.1.1 Providing the DAla.........cccuiiiiiiiiiiiiieieet ettt ettt ettt 135
5.2 TEMPIALE STFUCTUIE ...ttt ettt nn e e 137
5.2.1 Template Object - TVPETEMPIALEoiiiiiiiii e 138
5.2.2 Template Page Object - TVPETemPIatePageccooviiiiiiiiiiieieee e 138
5.2.3 VPE ODJECt - TVPEODJECTcuviiieiiitiiitetee ettt 139
5.2.4 Data Source Object - TVPEDAASOUITEcccuiiuieiiaiiaiieieenieeie ettt 139
5.2.5 Field Object - TVPEFIEIdc.ooiiiiiiii e 140
5.3 Template Processing TULOTTAL.uiuiiiiiiiiiiiie it 141
5.3.1 DUMPING & TEMPIALE ...ttt ettt ee e 142
5.4 VPE ODjJECE PrOCESSING ... vevvtitteitteiite ettt ettt ettt ettt s bbbttt ettt e nneanes 147
5.4.1 Modifying VPE Objects in @ TEMPIALE.........c.viiiiiiiiiieiee e 147
5.4.2 Modifying VPE ODjJects in @ DOCUMENTccouiiiiiiiiiieiieieeiee e 148
5.4.3 NOE TOr VPE-DLL USEISciiiiiiitiiiiiieit ettt ettt 153
5.4.4 Important NOte FOr VPE-VCL USEISccuuiiiiiiiiiiiieiteie ettt 153
5.5 Analysing and Modifying TemplateS DY COUEc.eiiiiiiiiiiiiiii s 155
5.5.1 Analysing and Modifying the Layout STrUCTUIEcccooiiiiiiiiiiieee e 155
5.5.2 Analysing the DataSOUrCe SIIUCTUIE.........uuiiiiiiiiieie ettt 157
5.6 Path- and File Names in TEMPIALEScoviiiiiiiiiiiic s 159
5.7 Modifying the VPE DOCUMENT.utiiiiiiiiiiiiit ettt 160
5.8 Validating the Template AUtheNtiCItY KeY.........ccoiiiiiiiiiiii s 161
5.8.1 Using the AULhentiCity KEY.........ouiiiiiiii e 162
5.9 AdVaNCE PrOGramIMINGcoueieeiieiieiteaiee ettt ettt b et eenneenes 164
5.9.1 Inserting (dumping) a Template at a specific position in a VPE Documentccccccee.e 164

6 Interactive Documents 165
6.1 INEIaCHIVE DOCUIMEINTSeuiiiiiiiiie ittt ettt 165
6.2 Creating Interactive Templates With dyCOAOCc.cooviiiiiiiiiiiiii 166
6.3 Using Interactive TemplateS With VPEcooiiiiiiii s 167
B.3. 1 EXAMPIE. ...ttt bbbttt b ettt 167
8.4 THE FOCUS. ...ttt e bttt h e h e st h e bt h bttt ettt sttt n e 172
6.5 THE TAD-INAEXttt 172
6.6 Exchanging Values With CONLIOISc.eiuiiiiiiiiiiiic s 173
6.7 USING EVENLS FOI INTErACTION.eiiiiiiiiiiit ittt 175
6.8 ACCESSING CONIIOIS ... ettt ettt nes 176
6.8.1 Example: Enabling and Disabling CONtrolS.............ccoviiiiiiiiiiiieieseee e 176
6.9 AdVANCE PrOGIaMIMINGeiueiiieiiieiiieeie ettt bttt nneenes 177
6.9.1 NOteS, HINES AN THPS ..ee vttt e et et sta e e ssteeanbeeanreean 177
6.9.2 How TAB- and Group ID'S are reSOIVEd..........ccuviiiiiiiiiiiieie e 177
6.9.3 Simulating Buttons, Listboxes and COmMbBODOXESccvieiiiiiiiiiiiiee e 178
6.9.4 KeYDOAIrd ACCEIEIAIONSeiuviiiiiiiiieite ettt ettt 178

7 The PDF Export Module 179
7.1 PDF EXPOIt INTrOQUCTION........eiveiiieiiiiiiiiesite ettt 179
7.2 RESTIICTIONS ...ttt s sttt ettt s et 181
7.3 Using the PDF EXPOIT IMOTUIEooiiiiiiiiiiiece e 181
7.4 EMDEAUEA TMAGES ...ttt 181
7.5 Objects Marked AS NON-PHINtADIE. ...t 182
7.6 Transparent BACKGIOUNGScueiriiiiiiiieeieiaiie ittt 182
7.7 COI0OT SPACE ...ttt a bttt R et R bbbttt 182
8 The HTML Export Module 183
8.1 HTML EXPOIt INEFOTUCTIONeieiiiiiiiieiieeiee et 183
8.2 HTML EXPOIT RESIIICIIONSveiveeiiitiiiesiee ittt 183

8.3 HTML EXPOIT OPTIONS.eettiitieiiie ittt ettt 184

8.4 Printing EXported HTML DOCUMENTS.cutiriiiiiiiiiiiaiiaeeeie ettt 184

9 Redistributing VPE 186
9.1 MOAUIE DEPENABNCIES. ...ttt ettt nne e 186
9.2 BasSiC Structure 0Of the BINAIIESciuiiiiiiiiiiiiiiie et 187
0.3 SEIVET LICENSES ...ttt s ettt ettt ettt 189
9.4 Installing The VPE ActiveX On Target Machinescccooviiiiiiiiiiiiiieceeeeee s 190

9.4.1 Installing the VPE ActiveX - The Demo Banners Are Still Shown.............ccccoeiiiiiiniennnn 190
9.5 Redistribution OF VPE VIBWc.ciiiiiiiiiiiiiie e 191
10 Important Notes, Tips & Troubleshooting 192

10.1 Tips 192
10.2 FAQ 194

10.3 Printer TroubIESNOOTINGcc.veiiiiii it sire s 196
10.4 Video TrouBIESNOOTINGoivviiiiiiiii ettt sb et srne 197
10.5 KNOWN PIODIBMS ...ttt ettt sb et esnee s 198
10.6 If YOou Need TeChniCal ASSISTANCE.eiiiiiiiieitieiiie sttt siee 199
11 Standard Terms and Conditions of Use 201
11.1 IDEAL Software GmbH’s Standard Terms and Conditions 0f USe............cccoceviiiieninciiciinennens 201
12 Allgemeine Nutzungsbedingungen 208
12.1 Allgemeine Nutzungsbedingungen der IDEAL Software GMbBH.............ccccooiiiiiiiiiiiiiiies 208
13 Acknowledgements and Copyrights 216
13.1 Acknowledgements and COPYIIGNTScouviiiiiiiiiiiieiee e 216

14 Index 217

1 Installation

1.1 System Requirements

VPE needs at least a 386 processor with a numeric co-processor present. VPE is optimized
for Pentium and higher processors.

For users of the ActiveX and VB 5: VB 5 Service Pack 3 is required!
For users of the ActiveX and VB 6: VB 6 Service Pack 1 is required!
For users of Windows 2000: Service Pack 4 is required!

Virtual Print Engine - Programmer's Manual v4.00 Installation - 1

1.2 Windows Installation

The installer requires administrative privileges. Run the setup program VPE*.EXE (the name
depends on the Edition and supported platform) and follow the instructions on the screen. SETUP
will install the following directories / files in the directory you specified:

File / Directory

Meaning

asp.net\ directory with demo sources for ASP.NET, using the VpeWebControl
There is an important Readme.txt file explaining the proper import of the demo project!

CH#\ directory with demo sources for C#

C++\ directory with header-files and demo sources for use with C/C++ compilers

cbuilder\ directory with VCL as souce code for Borland C++ Builder (installation see below)

delphi\ directory with VCL as souce code and demo sources for use with Borland Delphi (installation
see below)

demos\ directory with demo executables

deploy\ directory with redistributable files (see "License Agreement™ in this manual)

deploy\VpeCitrl40.dep

dependency file for the VPE ActiveX Control; used by some install utilities, so they can
automatically determine, which DLL's are needed by the ActiveX

deploy\VpeCtrl40.ocx

VPE ActiveX Control [only 32-bit versions]

deploy\vpe<?>3240.dll

the engine DLL — where the <?> is to be substituted depending on the edition with:
‘C’ for the Community Edition

*S’ for the Standard Edition

‘X’ for the Enhanced Edition

‘P’ for the Professional Edition

‘E’ for the Enterprise Edition

‘I’ for the Interactive Edition

deploy\Vpe*.dll

the Winforms .NET Component - where the * is to be substituted depending on the edition
with:

‘Community’ for the Community Edition

‘Standard’ for the Standard Edition

‘Enhanced’ for the Enhanced Edition

‘Professional’ for the Professional Edition

‘Enterprise’ for the Enterprise Edition

‘Interactive’ for the Interactive Edition

deploy\VpeWeb*.dll

the VPE .NET WebServerControl - where the * is to be substituted depending on the edition
with:
‘Community’ for the Community Edition
‘Standard’ for the Standard Edition
‘Enhanced’ for the Enhanced Edition
‘Professional’ for the Professional Edition
‘Enterprise’ for the Enterprise Edition
‘Interactive’ for the Interactive Edition

images\ contains bitmaps, RTF and VPE documents used by the demos

images\DCD dycodoc sample files (Enterprise Edition and above only)

imp_libs\ import libraries for C++ and other compilers, see readme.txt in this directory
internet\ HTML demo sources which show the use of the ActiveX within Internet Explorer.

The HTML file contains detailed instructions on how to use the VPE ActiveX.

2 - Installation

Virtual Print Engine - Programmer's Manual v4.00

Progress\ directory with demo sources for use with Progress 4GL

vb\ directory with demo sources for use with Microsoft Visual Basic

vb net\ directory with demo sources for use with Microsoft Visual Basic .NET
vfoxpro\ directory with demo sources for use with Microsoft Visual FoxPro
orderinf.html [Trial-Version only] order informations

relnotes.html release notes, contains a list of changes for users of previous versions
uninstal.exe uninstall executable

uninstal.inf uninstall information file

ProgrammersManual.chm helpfile, VPE Programmer's Manual

VPE Control Reference.chm | helpfile for the control, i.e. VPE .NET / ActiveX / VCL Control Reference
VPE DLL Reference.chm helpfile, VPE DLL Reference

Vpeview.exe VPE Document File Viewer

All directories may contain important README.TXT files!

1.2.1 Installing Different Versions Or Editions

Starting with VPE version 3.60, you can install all versions and editions in parallel, as long as the
version number is greater or equal to 3.60.

Installing different editions of one and the same version in parallel has one side-effect to the
ActiveX: only the highest installed edition can be used. If you want to return to a lower edition,
you must uninstall any higher edition. This only applies to the ActiveX and does not affect the
.NET or VCL components, nor the DLL.

In addition you may install in parallel one edition of v3.50 as well as one edition of one version
between 3.00 - 3.20 as well as one version prior to v3.00.

1.2.2 How is the Windows System Directory affected by SETUP?

Without version checking, SETUP installs VPE and all related files in the target directory you
specify. With version checking, all DLL's - except the .NET component DLL - and the ActiveX
are additionally copied to the Windows System32 directory. Version checking means: SETUP
does not overwrite files, which have higher version numbers in their version information resource.

Virtual Print Engine - Programmer's Manual v4.00 Installation - 3

1.2.3 Installing the VPE .NET Component

After SETUP has been executed successfully, the .NET component is already installed on system
level. It is then available for all .NET development applications.

In order to place the VpeControl component onto the Toolbox of Visual Studio .NET, do the
following: Click onto the Toolbox, then "Components”. Afterwards right click and choose
"Add/Remove Items". A dialog will appear. Scroll down until you see "VpeControl". Click the
checkbox to activate it. Afterwards click "Ok™ to close the dialog. The VpeControl icon will
appear in the Toolbox under the "Components” category.

1.2.4 Installing the VPE - ActiveX

After SETUP has been executed successfully, the ActiveX (32 bit) is already installed on system
level. It is then available for all container applications. Nevertheless most containers (like Visual
Basic or Visual FoxPro) require that you additionally register the ActiveX inside of the container,
so it can be used by your application. How to register an ActiveX in a specific container is shown
in the manual of the container application.

For Example: In Visual Basic 6.0 you select the menu entry "Project" and then "Components”. A
dialog box appears, with a list of all available ActiveX's installed on your system. Scroll the list
down until "VPEngine ActiveX Control Library" is listed. Click at the line so that it is checked,
then click on "Ok". The VPE-ActiveX will be ready for use with Visual Basic.

NOTE: Some Containers (like for example Visual FoxPro) do not import the constants (like
VFREE, ALIGN_LEFT, etc.) defined in the ActiveX.

For some Containers we included definition files for import, please check the source code
directories.

The constants and their values are listed in this manual - and in the "Control Reference Manual"
(which is VPECTRL.HLP) - with the description of each function. Also the C-Header files ("*.H")
in the installation subdirectory "C" contain those definitions.

4 - Installation Virtual Print Engine - Programmer's Manual v4.00

1.2.5 Installing the VPE-VCL for Delphi / C++ Builder
After SETUP has been executed successfully, you will find the following two directories within
the installation directory:

CBuilder

Delphi

You can install the VPE-VCL component directly from its location in the installation
directory of VPE. But if you have an existing component directory (or wish to create one)
chose the appropriate directory and copy there VPENGINE.PAS, VPE_VCL.PAS and
VPEVCL*.RES. If you are using Delphi >= v3.0 or CBuilder >=v3.0 then copy the required
.DPK (CBuilder: .CPP + .BPK) file also.

Delphi 2, 3 and CBuilder 1, 3:
Please consult the readme file located accordingly in one of the above directories.

CBuilder 4/5/6:
First, select the "File | Close All" menu item of the IDE (important!)

Use the "File | Open™ menu item of the IDE to open the vpevcl4.bpk package file. In CBuilder
5 or 6 click the ™Yes" button in the dialog window prompting to convert the package to the new
format.

In the "Package" window press the "Install" button. A "VPEngine" icon will appear on the
"System" palette page.

Close the "Package" window. Click the "Yes" button in the dialog window prompting to save
changes in the package project file.

IMPORTANT: Now update in "Tools | Environment Options™ under the "Library" tab the
"Library Path" string to include the file path of VPE_VCL.hpp. Otherwise your projects using
VVPE will not compile.

Copy vpectrl.hlp and vpectrl.cnt to your C++ Builder \HELP folder (to include the VPE help
file in the TOC (Table of Contents) create a copy of vpectrl.cnt and rename it to vpectrl.toc),
then Help | Customize... your online help to include the help file.

Delphi4/5/6/7:
First, select the "File | Close All" menu item of the IDE (important!)

Use the "File | Open™ menu item of the IDE to open the vpevcl4.dpk (vpevcl5.dpk for Delphi 5
or 6) package file.

In the "Package" window press the "Install" button. A "VPEngine" icon will appear on the
"System" palette page.

Close the "Package" window. Click the "Yes" button in the dialog window prompting to save
changes in the package project file.

IMPORTANT: Now update in "Tools | Environment Options™ under the "Library" tab the

"Library Path" string to include the file path of VPE_VCL.DCU. Otherwise your projects using
VVPE will not compile.

Virtual Print Engine - Programmer's Manual v4.00 Installation - 5

Copy vpectrl.hlp and vpectrl.cnt to your Delphi \HELP folder (to include the VVPE help file in
the TOC (Table of Contents) create a copy of vpectrl.cnt and rename it to vpectrl.toc), then
Help | Customize... your online help to include the help file.

Borland Developer Studio 2006 / 2007 and CodeGear RAD Studio:

Use the "File | Open..." menu item of the IDE to open the vpevcl.bdsproj project file.
In the Project Manager, right-click on ""VPEVCL.BPL" and chose "Install"

IMPORTANT: Now update in "Tools | Options | Environment Options | Delphi Options |
Library - Win32" the "Search Path" string to include the file path of VPE_VCL.DCU.
Otherwise your projects using VPE will not compile.

For C++ Builder Projects, the IDE inserts a line like "#pragma link "VPE_VCL"" to your
source codes. Change this line to "#pragma link "VPEVCL.LIB™"

Uninstalling the VPE VCL component:

Select "Component | Install Packages"” from the main menu.

Select the "Virtual Print Engine Component” package and click the "Remove" button. After the
package was removed, click the "Ok™ button to confirm your changes.

Now remove in "Tools | Environment Options™ under the "Library" tab either the
VVPE_VCL.DCU (for Delphi) or VPE_VCL.hpp (for C++Builder) file path from the "Library
Path" string.

6 -

Installation Virtual Print Engine - Programmer's Manual v4.00

1.3 Non-Windows Installation

To install VPE on a non-Windows operating system, perform the following steps:
Open a shell

Extract the VPE archive with "tar xvf <archive>"
On some platforms (like Mac OS X and Solaris) it is required to unzip the archive first with
"gunzip <archive>"

cd into the directory "vpe", which has been created by extracting the archive
Execute the installer with "./install". The installer requires root privileges.

The installer will ask you, whether you wish to install the trial version or the full version. In the

latter case it will ask you for your license key.

In the following explanation ".so0" has to substituted with ".dylib" for Mac OS X platforms.
The installer copies libvpe<?>.so.<version> to the according lib directory at /usr.
This is the engine shared object - where the ? is to be substituted depending on the edition with:

‘c’ for the Community Edition
‘s’ for the Standard Edition

‘X’ for the Enhanced Edition
‘p’ for the Professional Edition
‘e’ for the Enterprise Edition
‘i’ for the Interactive Edition

Depending on the platform and processor, for which VPE is compiled, the target lib directory is
one of the following: lib, lib32, 1ib64, sparcv9, amd64.

In addition two symbolic links are created, namely:
libvpe<?>.so.<ver_major>.<ver_minor>
libvpe<?>.so

You should link your executables against libvpe<?>.so.

The SDK itself is installed into the directory /opt/vpe<edition>-<processor>.<version>:

File / Directory Meaning

bin Directory with utility software for licensing and uninstalling VPE, as well as demo
executables

bin/uninstall Utility to uninstall VPE

bin/insthlp Version and license manager called by the installer and the license and uninstall utilities,
do not use.

bin/vpedemo and vppdemo Demo executables (vpedemo demonstrates the features of the Standard Edition, vppdemo

demonstrates the features of the Professional Edition).

include Directory with headers for VPE

c++ Directory with demo sources for use with C/C++ compilers
for each .cpp file there is a shell script (starting with the letter ‘b’) to build the executable

Virtual Print Engine - Programmer's Manual v4.00 Installation -

e.g. with "./bvpedemo" you can build the vpedemo executable

deploy/

Directory with redistributable files (see "License Agreement"” in this manual)

deploy/libvpe<?>s0.4.0.2 or
deploy/libvpe<?>. dylib.4.0.2

The engine shared object - where the ? is to be substituted depending on the edition with:

‘C’ for the Community Edition
‘S’ for the Standard Edition
‘X’ for the Enhanced Edition
‘P’ for the Professional Edition
‘E’ for the Enterprise Edition
‘I’ for the Interactive Edition

deploy/LicenseTool

Server License Tool - use this tool to activate server licenses on target servers
(only Professional Edition or higher; only Solaris, OpenSolaris, Aix, AS/400)

doc

Directory with documentation files

doc/orderinf.html

[Trial-Version only] order information

doc/relnotes.html

Release notes, contains a list of changes for users of previous versions

doc/ProgrammersManual.pdf

Helpfile, VPE Programmer's Manual

doc/VPE DLL Reference.pdf

Helpfile, VPE DLL / Shared Object Reference

images/

Contains bitmaps, RTF and VPE documents used by the demos

images/dcd

dycodoc sample files (Enterprise Edition and above only)

1.3.1 Uninstalling VPE on Non-Windows Platforms
Open a shell and enter: /opt/bin/vpe<edition>-<processor>.<version>/bin/uninstall

e.g. "/opt/vpep-x86.4.0/bin/uninstall”

(do not cd into this directory, because the uninstaller can not delete it then)

8 - Installation

Virtual Print Engine - Programmer's Manual v4.00

2 Getting Started

2.1 VPE Control (.NET / ActiveX / VCL)

Place a VPE component onto a form and change its name to "Doc".
Place a button onto the form. In the OnClick() handler of the button, insert the following code:

Doc.0OpenDoc()

Doc.WriteBox(1, 1, 5, 1.5, "Hello World!")
Doc.Line(1.5, 3, 5, 6.5)
Doc._WriteDoc("'hello world.pdf™)
Doc.Preview()

Congratulations, this is your first program using VPE! Depending on the programming language
you are using, you must add semicolons ;" at the end of each line, or leave out the empty
parentheses "()"

The source code is self-explanatory, the only thing to explain are the numbers in the calls to
WriteBox() and Line(): these are the coordinates in centimeters relative to the upper left corner of
the page. The coordinates are organized as (left, top, right, bottom).

Note: you can also switch to inch units, so the coordinates are not in centimeters, but in inches.

Please note that this is a very very simple demo. For example, VPE can compute the width and
height of a text object depending on the text-length and the chosen font. So you can position
objects dynamically at runtime relative to each other, in contrast to a static layout.

We recommend to continue with the tutorial created by running the "vpedemo™ executable, which
comes with VPE. The demo named "Capabilities + Precision" creates a document with a handy 5-
page tutorial (beginning on page 2 of the document).

The very detailed and in-depth explanation of all aspects and features of VPE can be found in this
document in the chapter “Programming Techniques” on page 19.

Virtual Print Engine - Programmer's Manual v4.00 Getting Started - 9

2.2 VPE DLL on Windows

The following example is in C/C++, but can be easily translated to any other programming
language. Write the following function and call it from an event-handler of your application, for
example from an event-handler for a menu- or button-click:

void MakeDoc(HWND hWndParent)
{
// hWndParent is the window handle of your application window
VpeHandle hDoc = VpeOpenDoc(hWndParent, "Test', 0);
VpeWriteBox(hDoc, 1, 1, 5, 1.5, "Hello World!'");
VpeLine(hDoc, 1.5, 3, 5, 6.5);
VpeWriteDoc(hDoc, "hello world.pdf™);
VpePreviewDoc(hDoc, NULL, VPE_SHOW_NORMAL);

>

You must link your application against the VPE library. For example, in Visual Studio put the
library into your solution. The library can be found in the installation directory of VPE, in the
subdirectory "imp_libs" under the name "vpe<version>.lib".

Congratulations, this is your first program using VPE! The source code is self-explanatory, the
only thing to explain are the numbers in the calls to WriteBox() and Line(): these are the
coordinates in centimeters relative to the upper left corner of the page. The coordinates are
organized as (left, top, right, bottom).

Note: you can also switch to inch units, so the coordinates are not in centimeters, but in inches.

Please note that this is a very very simple demo. For example, VPE can compute the width and
height of a text object depending on the text-length and the chosen font. So you can position
objects dynamically at runtime relative to each other, in contrast to a static layout.

We recommend to continue with the tutorial created by running the "vpedemo™ executable, which
comes with VPE. The demo named "Capabilities + Precision" creates a document with a handy 5-
page tutorial (beginning on page 2 of the document).

The very detailed and in-depth explanation of all aspects and features of VPE can be found in this
document in the chapter “Programming Techniques” on page 19.

10 - Getting Started Virtual Print Engine - Programmer's Manual v4.00

2.3 VPE Shared Object / Dylib

The following example is in C/C++, but can be easily translated to any other programming
language. Write the following function and call it from the main() function of your application:

void MakeDoc(HWND hWndParent)
{
VpeHandle hDoc = VpeOpenDoc(NULL, "Test™, 0);
VpeWriteBox(hbDoc, 1, 1, 5, 1.5, "Hello World!'");
VpeLine(hDoc, 1.5, 3, 5, 6.5);
VpeWriteDoc(hDoc, "hello world.pdf™);
VpeCloseDoc(hDoc);

3

You must link your application against the VPE library, please consult the manuals of your linker
on how to do this. On Linux for example, provide to the linker the switch "-lvpep" (vpep for the
Professional Edition, vpex for the Enhanced Edition, vpes for the Standard Edition and vpec for
the Community Edition).

Congratulations, this is your first program using VPE! The source code is self-explanatory, the
only thing to explain are the numbers in the calls to WriteBox() and Line(): these are the
coordinates in centimeters relative to the upper left corner of the page. The coordinates are
organized as (left, top, right, bottom).

Note: you can also switch to inch units, so the coordinates are not in centimeters, but in inches.

Please note that this is a very very simple demo. For example, VPE can compute the width and
height of a text object depending on the text-length and the chosen font. So you can position
objects dynamically at runtime relative to each other, in contrast to a static layout.

We recommend to continue with the tutorial created by running the "vpedemo™ executable, which
comes with VPE. The demo named "Capabilities + Precision" creates a document with a handy 5-
page tutorial (beginning on page 2 of the document).

The very detailed and in-depth explanation of all aspects and features of VPE can be found in this
document in the chapter “Programming Techniques” on page 19.

Virtual Print Engine - Programmer's Manual v4.00 Getting Started - 11

3 Introduction

3.1 Overview

Congratulations on your purchase of Virtual Print Engine! With VPE you acquired a product of
superior quality in terms of performance, stability, well tought-out programming interface, multi-
platform support, in-depth documentation and support.

VPE is a very fast and powerful tool for the dynamic creation of documents. It offers broad
support in creating just any kind of document, like complex reports and lists, forms, diagrams,
drawings, labels and barcodes.

VPE provides a well thought-out set of functions to place objects (i.e. lines, text, images, etc.)
freely in a document. The basic conception is that your application calls these functions during
runtime to create dynamically the layout of entire documents.

VPE supports you by computing automatically word-breaks as well as page breaks, splitting up
long text over multiple pages. You can make objects like text, rich text and images dynamic, so
they extend accordingly to their content. You can pre-compute (render) the dimensions of such
dynamic objects before inserting them into a document and you can position other objects
relatively to the extents of such dynamic objects. You can add at any time new pages and you can
move at any time to any page to add new objects.

All this is done through a simple and intuitive API (Application Programming Interface). Whilst
the API is very extensive to provide full control over every aspect of the document creation
process, you only need to know a handful of methods and properties to start generating high-level
documents within minutes.

Since you control the layout of each object by code, there is no limit for the complexity of a
document: each object is positioned in a high resolution coordinate system with an internal
precision of 0.0001 mm.

VPE helps increasing your productivity by many times, having its position in the list of your tools
at the point, where you can't go further with standard report generators.

12 . Introduction Virtual Print Engine - Programmer's Manual v4.00

3.1.1 VPE In Short (all Editions)
Using special, optimized algorithms (since 1993 under development), VPE is really fast!

Unlimited number of pages per document and unlimited number of simultaneously open
documents (only limited by available memory / harddisk space)

VPE allows true Multi-Tier application development: it is database independent, since your
applications supply and layout the data.

Use colors, lines, frames, boxes, ellipses, bitmaps, and - of course - text.

All drawing coordinates can be specified in centimeter or inch units, with an internal precision
of 0.0001 mm.

Compute the width and height of text and image objects depending on their content.

Create for example 100 pages and move to any other page to draw additional objects.
Specify the page dimensions and orientation (portrait or landscape) for each page separately.
BMP import

High quality PDF export

Windows platform:

Built-in, zoomable preview with true WYSIWY G vector-graphics. In fact, VPE renders all
objects in a virtual high resolution and then transforms it to the specified device, be it the
screen, a printer, a fax or whatsoever. This gives best possible WYSIWYG results.

The preview can be shown - and the user can scroll through it - while you are still generating a
document. Works with and without multi-threading!

Direct printing and printer access. Enumerate all available printers, select a specific printer by
code, and modify nearly all possible printer properties by code. Specify the printer's paper bin
for each page separately.

Don't worry about the printer, its resolution, or printing-offset (this is the part of the page the
printer cannot print on). Your documents will look the same on every printer as much as it is
technically possible.

Send VPE documents and other attachments by e-mail and fax easily through Simple MAPI -
royalty-free document viewer included

The ActiveX offers full FTP- / HTTP-support to create server based reports. Therefore you can
plug it into browsers on the intra- and internet and even reference image and RTF files with for
example "ftp://ftp.my-server.com/imagel.gif" in your source code (VB Script or Java(-script)).
On the other hand, you can create a VPE Document file in your native programming language

on the server (or transfer it there) and instruct the ActiveX in the browser to load and display a
specific document file from the server in the intra- or internet. Moreover the images contained

in the document may be linked to image files stored on the server.

VPE's user interface (GUI) "speaks" eleven languages: VPE selects the right language for all
tooltips and dialogs automatically - depending on the country setting in the control panel of the
system VPE is currently running on. Supported languages are: English, Spanish, German,
French, Italian, Dutch, Danish, Swedish, Finnish, Norwegian, Portuguese. Optional you can
select the language by code. In addition you can define all text of the GUI elements by code, so
you can use any language.

WMF and EMF (Metafiles and Enhanced Metafiles) import

Virtual Print Engine - Programmer's Manual v4.00 Introduction - 13

3.1.2 Community Edition

Basically, the Community Edition is identical to the Standard Edition, with the following
exceptions:

Compression for generated PDF files and native VPE document files is not supported.
Compressed documents are in regular 4 — 5 times smaller.

True-Type font embedding for PDF files is not supported. The higher editions of VPE are
capable to embed all used True-Type fonts into the generated PDF file. When sending a PDF
document to a receiver which doesn’t have the used fonts installed on her / his machine, those
fonts are not displayed.

The PrintDoc() method is not provided. The preview must be shown, so the user can click onto
the print-button in the toolbar. Therefore batch printing is not possible.

Embedding the preview into a host window of the calling application is not supported.

The preview can not be customized. All other editions offer to selectively hide any elements of
the GUI, like the toolbar, each toolbar button, the rulers, the statusbar, etc.

No Open / Save and Help buttons in the toolbar.
The preview is not themeable, i.e. the “Whidbey” theme is the only available theme.
The scale and scale mode of the preview can not be modified by code.

No Device Control Properties, i.e. there are no methods to specify by code the page range,
number of copies, collation or duplex printing, etc. or to enumerate and select a specific printer,
paper bin, etc. Of course the user can make selections in the printer setup dialog shown before
printing.

No special printer setup function. All other editions offer to show a separate printer setup
dialog, so the user can make all selections for page range, copies, collation, duplex printing,
output device etc. and those selections are stored permanently in a file for later automatic re-
use.

The paper bin can not be set by code for individual pages.

No e-mail API , i.e. receivers, CC’s, BCC’s, attachments, etc. can not be set by code.
Hatching, Gradients and Rounded Corners are not implemented.

The rotation of text and images is not supported.

The image cache for fast loading and management of images is not implemented.

WMF / EMF import is not implemented, the Community Edition can read BMP images only.
Many functions to customize the behavior of VPE have been removed.

14 -

Introduction Virtual Print Engine - Programmer's Manual v4.00

3.1.3 Enhanced Edition

Enhanced image import functionality, reads the following image file formats:
enhanced BMP's (supports the OS/2 BMP format)
TIFF 6.0 (Fax G3 & G4, grayscale, LZW, packbits, multipage)
GIF
JPEG
PNG
PCX
ICO (Windows Icon)
JNG (JPEG Network Graphics)
KOA (C64 Koala Graphics)
IFF/LBM (Interchangeable File Format - Amiga/Deluxe Paint)
MNG (Multiple-Image Network Graphics)
PBM (Portable Bitmap, ASCII or RAW)
PCD (Kodak PhotoCD, reads always the 768 x 512 pixel image)
PGM (Portable Greymap, ASCII or RAW)
PPM (Portable Pixelmap, ASCII or RAW)
RAS (Sun Raster Image)
TGA/TARGA (Truevision Targa)
WAP/WBMP/WBM (Wireless Bitmap)
PSD (Adobe Photoshop, only 24-bit RGB or 24-bit RGB RLE)
CUT (Dr. Halo)
XBM (X11 Bitmap Format)
XPM (X11 Pixmap Format)
DDS (DirectX Surface)
HDR (High Dynamic Range Image)
G3 (Raw fax format CCITT G.3)
SGI (SGI Image Format)

Rotation of Images in 90 degree steps (except metafiles)

Generates 38 different barcode types

EAN-13, EAN-13+2, EAN-13+5, EAN-8, EAN-8+2, EAN-8+5, EAN-128A, EAN-128B,
EAN-128C, EAN-2, EAN-5, UPC-A, UPC-A+2, UPC-A+5, UPC-E, UPC-E+2, UPC-E+5,
Codabar, Code 11, Code 39, Code 39 extended, Code 93, Code 93 extended, 2 of 5, Interleaved
2 of 5, 2 of 5 Matrix, Telepen-A, POSTNET (1.20), Code-128A, Code-128B, Code-128C,
Royal Mail, Msi, ISBN, ISBN + EAN 5, Identcode, Leitcode, Pharma Zentral Code

Virtual Print Engine - Programmer's Manual v4.00 Introduction - 15

3.1.4 Professional Edition

Renders RTF (Rich Text Format) and imports RTF files.
VPE supports a subset of RTF (see “RTF - Rich Text Format” on page 53 for details)

Charts - VPE supports all basic types of charts using SmartChart technology
2D Barcodes — Generates 2D barcodes of the types: PDF417, DataMatrix, Maxicode and Aztec
HTML Export — Exports VPE documents into the HTML file format

Character Placement - You can specify a constant offset from one character to another for text
objects (not RTF) in 0.0001 mm resolution. This is very good for filling in forms that have pre-
printed columns for each letter.

Object Visibility - Objects (like text, images, barcodes, etc.) can be set to printable only, i.e.
they are not shown in the preview but they are printed. Vice versa objects can be set to
viewable only, i.e. they are shown in the preview (for example as hint or comment) but they are
not printed.

Pages can be cleared (i.e. all objects of a page are deleted), pages can be removed and pages
can be inserted between existing pages (lower editions can only add new pages at the end of a
document).

Windows platform:

UDO - Powerful User Defined Objects - This allows to print and preview any kind of drawing
or object, including OLE/COM objects!

Clickable Objects - Objects can be made clickable. If the user clicks onto such an object your
application receives an event. This allows to implement drill-down reports or to show a
separate dialog, with more detailed information about the clicked text or image.

Export of single pages or parts of pages as:
BMP
WMF (Windows platform only)
EMF (Windows platform only)
JPEG (compression ratio can be set freely)
PNG (ZIP compressed)
TIFF 6.0 (Fax G3, Fax G4, LZW, Packbits, Deflate, JPEG, Multipage)
- GIF (Multipage)
For all bitmap formats you can specify the color depth and the resolution (in DPI). Additionally
dithering is possible.

Scale-To-Gray Technology - a 300 or 600 DPI image scaled to a 96 DPI device (the screen) is
looking bad due to its nature. The Scale-To-Gray Technology uses 2 different images, one for
the screen (preview) and one for printing. The screen image is scaled down to 96 DPI while the
loss of visual information is transformed to gray-values. This means perfect readability of such
images on a 96 DPI device.

PrintScale - The output to the printing device can be scaled

16 -

Introduction Virtual Print Engine - Programmer's Manual v4.00

3.1.5 Enterprise Edition
Ships with dycodoc the visual designer to layout form templates by point-and-click
Extended VPE API to process the templates generated by dycodoc
Additional FormField Object

Allows to query and modify an object's properties even after it has been inserted into a VPE
Document

3.1.6 Interactive Edition

Supports interactive objects such as text and buttons. This way you can design document
templates which can be filled out electronically on the user’s computer screen with VPE.

Virtual Print Engine - Programmer's Manual v4.00 Introduction - 17

3.2 The Demo VPEDEMO.EXE

Welcome
An introduction.

Capabilities + Precision

This demo shows text formatting features, drawing features, bitmap handling, form filling and of
course printing. Important: the VPE-DLL "docks” its view inside of the window owned by
vpedemo.exe! This is very easily done by a few lines of C code!

The menu entry "Background” shows how to print without showing a preview and no setup-
dialog (default printer is used). The Preview sends the VPE_HELP message to the calling
application instead of showing the standard help dialog, so you see the message box "User
requested help"” on the screen.

Speed + Tables
Here you can see how fast VPE builds a report with a size of about 110 - 130 pages:

A text file with random data is generated (journal.rpt). vpedemo.exe reads the text file line by line,
interpreting it and instructing VPE how to build the report.

Since it is random data, the number of pages differs from 110 - 130 pages. Note, this demo prints
the number of generated pages finally on the FIRST page of the report in the upper left corner.
This is done by the virtual processing of the document, where you can move to any page at any
time to draw on it. In this case the demo generates all pages and then jumps to the first page to
draw the message.

Colors

There you can see a fixed scaled window. Also, the toolbar has only the print and the e-mail
button, and the status bar is hidden. The user cannot close the document; it can only be closed
through vpedemo.exe by selecting the "Close Preview” menu entry. If you print the page to a color
printer, you will get a true-color result.

Report

This is another report, showing various colors and a pie chart on the second page. The source
code shows very fine, how easy creating reports is by encapsulating the different parts of the
report into functions.

18 - Introduction Virtual Print Engine - Programmer's Manual v4.00

4 Programming Techniques

4.1 Introduction

The following chapters explain all features of VPE and the VPE API (Application Programming
Interface).

If you are using the VPE Enterprise or Interactive Edition, you might want to skip this chapter and
jump directly to the introduction of “dycodoc Template Processing” on page 134. However, we
recommend to return to this chapter later in order to make yourself familiar with the underlying
VPE API. It will help you in getting a better insight into the internals of VPE and to make use of
the powerful VPE API.

4.1.1 Note on Source Codes Shipped with VPE

VPE is shipped with detailed source codes for several programming languages like C/C++, Visual
Basic, Delphi, etc. The demo sources are installed in the respective subdirectories of the VPE
installation directory.

The source codes of the several demonstration programs have been created very carefully,
considering the specific characteristics of each programming language. They show all basic and
advanced techniques of how to use and control VVPE.

Source code tells much more in less time, than abstract descriptions do, and we understand it as a
substantial part of the documentation. So we strongly recommend that you study the
documentation as well as the source codes.

4.1.2 Basics

All objects of VVPE are positioned and sized with an internal precision of 0.0001 mm. You can
select programmatically, whether you supply coordinates to VPE in centimeter or inch units by
setting the property:

VPE.UnitTransformation
VPE.UnitTransformation

VUNIT_FACTOR_CM // centimeters
VUNIT_FACTOR_INCH // inch

Throughout this manual - as well as the reference manuals and the demo source codes - all
examples are using the centimeter unit coordinate system.

Most output functions need a starting coordinate (x, y) which specifies the upper left corner, and
some need an ending coordinate (x2, y2) for the lower right corner of an object - for example a
line or some text. X and X2 specify the offset to the left page margin. Y and Y2 specify the offset
to the top page margin.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 19

To draw a line starting at 1.58cm from the right and 2.5cm from the top of a page, ending at 5cm
from the right and 5¢cm from the top of a page, you would enter:

[Line(1.58, 2.5, 5, 5)

4.2 Using the VPE DLL / Shared Object

Note: For the VPE Control (.NET / ActiveX / VCL) there are examples for the first basic
steps in using VPE in the "Control Reference" (VPE Control Reference.chm).
Please read the introductory sections there and continue with the section
“Preview” on page 22 in this manual.

The common sequence of function calls is:

Open a document with the function VpeOpenDoc()

Use all possible methods to insert VPE objects (like text., etc.)

Use VpePageBreak() to generate new pages

Use VpePreviewDoc() to show the preview to the user, this is optional

Use VpePrintDoc() to print the document, or WriteDoc() to export it to PDF, HTML, etc.
Close the document with VpeCloseDoc()

IS L e o o

NOTE: Preview and printing is only available for the Windows platform. On all other platforms
you can generate VPE document files, as well as PDF and HTML (HTML output requires
the Professional Edition or above).

You may open as many documents simultaneously as you like. The documents are identified by a
unique handle (VpeHandle, which is a 32-bit integer on 32-bit platforms and a 64-bit integer on
64-bit platforms) with a value different from NULL, which is returned by VpeOpenDoc(). Use this
handle in successive calls to the output functions.

Each document might send messages. The messages are received by the window, that is specified
as parent-window in the first parameter of VpeOpenDoc(). On non-Windows platforms you can
install a message callback function.

20 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

Example in C, which can be easily translated to other programming languages:
Windows platform:

void MakeDoc(HWND hWndParent)

{
VpeHandle hDoc;

hDoc = VpeOpenDoc(hWndParent, "'Test", 0);
VpeLine(hDoc, 1, 1, 5, 5);
VpePreviewDoc(hDoc, NULL, VPE_SHOW_NORMAL);

>

A VPE document can exist without showing a preview. But if a preview is shown, the document is
closed and removed from memory by default, when the preview is closed by the user or when the
parent window is closed. If you call VpeEnableAutoDelete(hDoc, false), the document is not
closed when the preview is closed.

The code above will bring up the preview window (without the "Monthly Report" text) shown in
the next chapter.

All other platforms:

void MakeDoc()

{
VpeHandle hDoc;

hDoc = VpeOpenDoc(NULL, "Test'™, 0);
VpeLine(hDoc, 1, 1, 5, 5);
VpeWriteDoc(hDoc, "‘test.pdf'’);
VpeCloseDoc(hDoc);

>

Generates a PDF file named "test.pdf". On non-Windows platforms you must always call
VpeCloseDoc() to remove a document from memory.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 21

4.3 Preview
Screenshot on Windows Vista (Whidbey Theme):

— OpenfSave f Export

— Frint

— Send Mail specify receiver(s), text and attachrmentis) by code. Free Document Yiewer included.

Mavigate through the document
ser requests help. Routed as event to vour application

About VPE
200 Grd Close Preview
7] Sanple Apblic [o] x|
Ed =2 BB®E # K4 00 Q
o |8l bttt bt sl et bbbt S
Monthly Report

%]

— =1
il YEVA o YO il

o
0% 42/1000 4 = | Ready

Mavigate quickhy Wite your messages here,
through the document ar overlay with a buitt-in progress bar.

—
=1 |

FPage of total pages. Clickwith the mouse or press [Enter] to erter a page nurnber and jump directly to the given page.

— Zoom factar

Mouse Operation and Keyboard Accelerators:
Left mousebutton: magnify view (in Zoom-Tool mode)
Right mousebutton: reduce view (in Zoom-Tool mode)
Middle mousebutton: turn Zoom-Tool mode on / off
Ctrl + Middle mousebutton: fit page-width mode
Shift + Middle mousebutton: fit whole page mode
Ctrl + MouseWheel: magnify / reduce view
Insert: turn Zoom-Tool mode on / magnify view
Ctrl + Insert: fit whole page mode
Delete: reduce view
Ctrl + Delete: fit page-width mode
Home: top of page
End: bottom of page
Ctrl + Page Up: first page
Ctrl + Page Down: last page
Page Up: one page back
Page Down: one page forward
Arrow Up: scroll up
Ctrl + Arrow Up: scroll visible part up

22 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

Arrow Down: scroll down

Ctrl + Arrow Down: scroll visible part down
Arrow Right: scroll right

Ctrl + Arrow Right: scroll visible part right
Arrow Left: scroll left

Ctrl + Arrow Left: scroll visible part left

The Zoom-Tool:

When activating the Zoom-Tool by clicking onto the zoom-tool button " in the toolbar or by
pressing the Insert key, the mouse cursor changes to the zoom-tool icon and you have several
options:

You can click with the left mouse button somewhere into the preview. This will zoom in by one
level and center the preview at the point you had clicked. You can also press the Insert key, this
will zoom in by one level using the current center of the preview.

You can click with the left mouse button somewhere into the preview, hold the button down
and drag the mouse. In this case a rubber band will appear. When you release the mouse button,
the area covered by the rubber band will be zoomed into the preview.

You can click with the right mouse button somewhere into the preview. This will zoom out by
one level and center the preview at the point you had clicked.

You can end the zoom tool mode by either pressing the ESC key or by clicking once again onto
the zoom-tool button in the toolbar.

Special Keys:
Ctrl + O: Open
Ctrl + S: Save
F1: Help
F2: Print
F3: Mail
'g": Turn Grid on / off (only, if the grid button in the toolbar is enabled)
'i' Info Dialog
ENTER: enter a page number to preview

All keys listed above can be re-defined by your application, i.e. you can define by code, what key
will cause a specific action.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 23

Interactive Edition only:

Tab: move the focus to the next enabled Control - if no Control currently owns the focus, the
focus is set to the Control with the lowest Tab-ID

Shift + Tab: move the focus to the previous enabled control

ESC: remove the focus, if the focus is currently owned by an Interactive Text or an Interactive
Form Field

The preview window can be customized in many ways: all keyboard accelerators can be redefind.
You can hide buttons and button groups or even the whole toolbar. You can also hide the rulers
and the statusbar, or specific controls of the statusbar. For details see "Management Functions™ in
the reference help files.

The closing of the document fires the event AfterDestroyWindow() (VCL: OnDestroyWindow();
DLL: VPE_DESTROYWINDOW) to your application, which can be used in several ways to have
control over what is happening. For example you can disable menu entries and buttons in your
application, which start report generation - so a report isn't generated a second time - and re-enable
them after receiving this event.

24 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.3.1 The GUI is themeable
The Office 2000 theme on Windows 2000:

=10]
EE S0 FRERE # K4 PN 21 ®
o 0 1 z a3 4 5 5] T g g 10 11 12 13 14 15 16 17 18 19

MM
3

—=
111

Monthly Report

7= _'|_I
[100% [34z2/1000 [+ | _*[Peady i

The Whidbey theme on Windows 2000:

=[S
Ed 3= BRRAA # H4rH @00 O
cri (9 1 2] 4 5 & 7 g 9 10 11 12 13 14 15 16 17 18 18

T M
3

—=
L1l

Monthly Report

[+ |
0% 342 /1000 4| i _+| Ready

P
[yl
-
. 1

i,
= L

The Whidbey theme on Windows XP:

B Sample Application
Sd 90 ARR # K4r N @0 O

crn 1 2 5 4 = 5 7] 9 10 11 12 13 14 15 16 17 18 19

Monthly Report

100 % 34241000 4 | i | Ready

The Office 2003 Blue theme on Windows XP:

2 Sample Application
S S RARBARIE # Kar 6D O
crn (0 1 2 3 4] 5} 7] 9 10 11 12 13 14 15 16 17 18 19

Monthly Report

| £

.
%

0% 342/1000 4 | | Ready

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 25

The Office 2003 Olive theme on Windows XP:

il SampIEsApPIGALIoN| Lj Lil a‘
Ed 32 BARE # H4rH 00 O
cm |0 1 2 3 4 5 E 7 g] 10 11 12 13 14 15 16 17 15 18

Monthly Report

Ham ¥
100 % 342 /1000 4 | | | Ready

The Office 2003 Silver theme on Windows XP:

Tl Sample Application E]@
G 2= ARaEe @ 14 b e 0

2 3 4 = 5} 7 &] 10 11 12 13 14 15 16 17 18 19

crn 1

Monthly Report

= 3 | (2]
W0% 34271000 4| | v e

Each theme can be used on any supported Windows version, except the Office 2003 Blue, Olive
und Silver themes, which are especially adapted to the predefined themes of Windows XP.

26 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.4 The Object-Oriented Style

The objects of VPE, like lines, boxes, text, images, etc. are organized in a hierarchical structure,
where the properties of one object are inherited to other objects.

The following sections show the dependencies between the different objects and explain how to
set the properties.

4.4.1 VPE knows the following objects:

Pen Style-Object

Background Style-Object

Hatch Style-Object

Foreground Style-Object (accessed with VVpeSetTextColor())
Line

Polyline

Polygon

Ellipse

© © N o g s~ D

Frame

[EY
o

. Picture

[
[

. Box

[EY
N

. Barcode

. Text

. Rich Text Format (RTF) [Professional Edition and above]

. Chart [Professional Edition and above]

. User Defined Object (UDO) [Professional Edition and above]
17. FormField [Enterprise Edition and above]

e e
o Ul M W

Attributes for one object inherit to the others.

Examples:

The frame is inherited from the pen. Therefore the border of a frame is drawn with the size,
style and color you use for the pen.

Boxes, framed text, barcodes, and bitmaps are inherited from the frame. Their surrounding
rectangle is drawn with the size, style and color you use for the pen.

Also the box implements a backgound mode (BkgMode), so the inner area of a box can be:
filled with a solid color and optionally hatched
transparent and optionally hatched
one of the gradient styles

The box of a text-box is drawn with the settings for the box.

So if you set the pensize to 0, no frame is drawn around any object.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 27

NOTE: "Frame" is a virtual object, you cannot access it (i.e. there is no function VpeFrame or
s0). To draw a frame, use the method Box() and set the background transparency to
"on" with "BkgMode = VBKG_TRANSPARENT".

4.4.2 The inheritance order is

Pen Background + Hatch
Line Polyline Polygon Ellipse
Frame

Picture Box

uboO

RTF Chart FormField

28 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.4.3 Assigning Styles and Properties to Objects

Before you insert an object into a document - for example a text - you specify all its properties and
styles.

Examples:
FontName "Times New Roman"
FontSize 12

Print(1, 1, "Hello World!")

Will print the text "Hello World!" with the font Times New Roman in 12 pt. size.

FontName = "Times New Roman"
FontSize = 12

Print(1, 1, "Hello World!™)
TextBold = True

Textltalic = True
Print(1, 2, "Hello Everybody!™)

Will print the text "Hello World!" with the font Times New Roman in 10 pt. size and the text
"Hello Everybody!" with the same font, but in bold and italic.

FontName "Arial”

FontSize 10

PenSize = 0.06

BkgMode = VBKG_GRD_LINE
BkgGradientStartColor = COLOR_LTYELLOW
BkgGradientEndColor = COLOR_ORANGE
PrintBox(1, 1, "Hello World!")

Will print the text "Hello World!" with the font Arial in 10 pt. size, surrounded by a box drawn
with a 0.6mm thick pen and filled with a gradient running from light yellow to orange.

Note that the text object was inserted with the method "PrintBox" instead of "Print()" in the
previous examples. You will also notice that font sizes are given in Point, whilst positions and
the line thickness are given in metric units (inch units could also be used).

The examples above show VPE's basic principle for assigning properties to objects:

First, you set all global properties to the desired values and then you insert an object. When
inserted, an object will automatically use all related global properties. After an object has been
inserted into the document, its properties can not be modified (except in the Enterprise and
Interactive Edition).

The global properties keep their values until they are changed. When opening a document, each
global property has a default value which is indicated in the reference help files.

Each VPE document keeps and manages independently its own set of global properties.

NOTE: In the examples above we used the True-Type fonts "Times New Roman" and "Arial".
These fonts are not available by default on other platforms than Windows and Mac OS.
For details about using fonts on various platforms, please see “Fonts and Font Handling”
on page 123.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 29

4.5 Dynamic Positioning

VPE's conception of "Dynamic Positioning" is very important for its efficient use.

It's a very powerful conception, which helps to position and size objects relative to each other.
Since dimensions of images and variable text can not be known in advance, VPE offers you
several mechanisms to determine them during the creation of the document, that is: during
runtime.

We strongly recommend, that you read the following sections careful to understand them.

4.5.1 The Basic Conception - Absolute Coordinates

Objects can be positioned and sized with absolute coordinates. There are mostly two coordinate
pairs left, top and right, bottom to set the position of the top left corner and the bottom right corner
of an object:

Rectangle example for a circle, which is a rectangular object in VPE
left, top left, top
right, bottom right, bottom

NOTE: You must specify all coordinates in normalized form, this means, the following conditions
have to be met:

left <= right and top <= bottom, otherwise the object will not display correctly.

Example:

Box(1, 1, 5, 5) is correct
Box(5, 5, 1, 1) is incorrect
Box(1, 5, 5, 1) is incorrect

Instead of specifying the bottom right corner in absolute coordinates, you can use negative values
for the right and bottom coordinates. These values are then interpreted as width and height of the
object.

Example:
[Box(1, 1, 7, 9) |

Uses absolute coordinates and draws a box with the top left corner at 1, 1 and the bottom right
corner at 7, 9.

[Box(1, 1, -6, -8) |

Draws exactly the same box whilst specifying the width and the height of the box.

30 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.5.2 Dynamic Positioning

The central text output functions Write, Print (and also the RTF output functions) and the Picture

functions are able to compute their object's height - or height and width - when being inserted into
a document. But how large is the height / width? How can you position the next object relative to

the last inserted?

The following constants called V-Flags will help:

Flag Meaning

VFREE A flag for indicating, that VPE shall compute a coordinate dynamically. For text and images it can be
used for the right coordinate (width) as well as the bottom coordinate (height). For text it means that
the coordinate shall be computed due to the text-length and font size when a text object is inserted.
For images the coordinate will be computed based on the resolution and dimensions found in the
image file. For Rich Text (RTF) you may only set the bottom coordinate to VFREE, the right
coordinate can not be dynamic.

VLEFT the left coordinate of the last inserted object on the current page

VRIGHT the right coordinate of the last inserted object on the current page

VTOP the top coordinate of the last inserted object on the current page

VBOTTOM the bottom coordinate of the last inserted object on the current page

Note that VPE keeps track of these coordinates for each page separately.

NOTE: In .NET you have to prefix the V-Flags with the class name VpeControl, e.g.:
Report.Print(VpeControl .VLEFT, VpeControl .VBOTTOM, "Hello'™)

As an alternative you can use the instance name of the control followed by an
n-Property, e.g.:
Report.Print(Report.nLeft, Report.nBottom, "Hello'™)

which is the recommended way.

Examples:

[Write(1, 1, -6, VFREE, "long text..... D)

Inserts a text object without frame at position 1cm, 1cm with a width of 6 cm.
Its height is calculated and depends on the length of the text and the font size used.

[StorePos)

This will store the coordinates (left, top, right, bottom) of the last inserted object on a dynamic
stack. The stack is limited in size only by available memory.

|Write(VRIGHT, VTOP, -4, VFREE, "another text')

This inserts the next text object at position left = 7cm (the right-coord. of the last inserted
object [1 + 6]), top = 1cm (the top-coord. of the last inserted object); with a width of 4cm.
The height is computed (VFREE).

[RestorePos()

This will now restore the last stored coords from the stack.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques -

31

|Write(VLEFT, VBOTTOM, VRIGHT, VFREE, "another text2')

This inserts the next text object at position left = 1cm (the left-coord. of the restored coords),
top = ?cm (the bottom-coord. of the restored coords, we use a ‘?’ here, because we do not
know the exact value, since VPE did compute it), with a width of 6cm (the right-coord. of the
restored coords), the height is calculated.

4.5.3 Dynamic Text
In the following (left, top, right bottom) is written as (X, y, X2, y2).

For Text and Rich Text, VPE computes automatically word-breaks according to the setting of the
object's right coordinate (x2). If text reaches the right coordinate, it is broken at the next possible
word boundary to the next line, and text output is continued at the left coordinate (x) of the object
until all text has been drawn, or the bottom coordinate of the object is reached.

: This is some
. longer text.

Autornatic
Word Break

Fig. 1: (X, y) and (x2, y2) are fixed coordinates.
A word-break occurs at the object’s right boundary (x2).

If the bottom coordinate is not dynamic (i.e. not VFREE) and there is not enough room to output
all text, remaining text will be clipped.

Clipped text
{invisibie)

Fig. 2: (x,y) and (x2, y2) are fixed coordinates. A word-break occurs at x2.
The bottom coordinate is not large enough, so remaining text is clipped.

32 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

If the right coordinate is dynamic, text will extend to the right.
NOTE: for Rich Text (RTF) x2 can not be set dynamic.

Fig. 3: (x,y) and y2 are fixed coordinates. x2 is dynamic, the text extends to the right.
The right coordinate is computed accordingly.

In the following example the right and bottom coordinates are dynamic, watch the difference of
the bottom coordinate in contrast to the previous example.

(VFREE, WwFREE)

Fig. 4: (x,y) are fixed coordinates. (x2, y2) are dynamic, the text extends to the right.
The right and bottom coordinates are computed accordingly.

If the bottom coordinate is dynamic (i.e. it is VFREE), the object will grow downwards until all
text has been output. If the bottom margin is reached and there is still text remaining which needs
to be drawn, VPE can break the text automatically to the next page, depending on the settings of
the property AutoBreakMode (see “Automatic Text Break” on page 41).

. This is some

very long text,

:which extends
WFREE tD the bottom.

(2, VFREE)

Fig. 5: (x,y) and x2 are fixed coordinates. y2 is dynamic, the text extends to the bottom.
The bottom coordinate is computed accordingly.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 33

If you use VFREE for the right coordinate (x2) of a text object, the right page margin (see the next
chapter "Page Marqgins™), will be used as the maximum possible coordinate to which the dynamic
coordinate may extend. If the right border of the object reaches the right margin, a word-break will
be computed and text is continued on the next line at the left coordinate (x) of the object.

NOTE: If text is positioned to the right of the right margin, the right page border has the same
effect as the right margin.

Right Page Border

Right Margin

Autormatic
Word Braalk

Fig. 6: (x,y) are fixed coordinates. (x2, y2) are dynamic, the text extends to the right until the
right margin is reached. The right and bottom coordinates are computed accordingly.

34 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.5.4 Page Margins

The page margins of VPE are virtual margins. That means, you can place text and other objects
outside of them.

Nevertheless the margins play an important role for the behavior of some methods:

The bottom margin tells VPE, where to start with the Automatic Text Break, which means that
text exceeding the bottom margin is automatically skipped to the next page. You can change
this by modifying the property AutoBreakMode (see “Automatic Text Break™ on page 41).

The top margin tells VPE, where to start with automatically broken text on successive pages.

The right margin is important for text output, as explained in the previous chapter "Dynamic
Text".

You set the margins for the current page by setting the properties nLeftMargin, nTopMargin,
nRightMargin and nBottomMargin. But this only helps for the current page. A new page,
generated either with a call to PageBreak(), or by an Automatic Text Break will use DEFAULT
values.

Why? Well, perhaps you want on successive pages other margins, especially if an Automatic Text
Break occurs. How else could you change the layout of successive automatically generated pages?

The method provided by VPE for setting the default margins, which are used for newly generated
pages is:

SetDefOutRect(LeftMargin, TopMargin, RightMargin, BottomMargin)

Keep in mind that there is a difference between the properties for the margins, which are only
valid for the current page you're working on, and the default-margins for newly generated pages.

By default, VPE defines the margins and default margins 2cm from the paper edges. The right and
bottom paper edge is defined by the property '‘PageFormat’, which may be 'DIN_A4', 'US_Letter’,
etc. or 'User_Defined'. In the latter case the page dimensions are specified individually through the
properties 'PageWidth' and 'PageHeight'.

The page dimensions can be set for each page individually.

You can access (read / write) the margins with the properties nLeftMargin, nTopMargin,
nRightMargin and nBottomMargin (DLL: use the methods VpeGet() and VpeSet() with the flags
VLEFTMARGIN, VTOPMARGIN, VRIGHTMARGIN, VBOTTOMMARGIN).

So they can work as placeholders for you, holding the definitions of the current page / document.
Example:

|Write(1, 15, nRightMargin, VFREE, "long text..... ™)

In the above example, the “long text” will extend to the right margin of the current page.

If you need to change the margins later during the development process, and your calls to VPE are
considering them like in the example above, you will have no problems with the new layout.

As you can place text and other objects outside of the margins, the rectangle defined by the
margins is also called "Output Rectangle". There are two related methods to define the margins -
or output rectangle - at once: SetOutRect() and SetDefOutRect().

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 35

Calling SetOutRect() sets all four margin coordinates at once. Both, the nMargin properties and
this method modify the margins on the current page you are working on.

In contrast, the DefOutRect defines the margins that will be used for a newly generated page. This
is very helpful, if you want to place a text that is automatically broken to the next page with the
auto break feature in a completely different rectangle.

Margins: Summary

VPE knows an output rectangle on each page. This can be compared to the printable area or page-
margins.

The output-rectangle is only for your own orientation purposes when positioning objects. In
addition text output functions use the output-rectangle to consider the maximum right border.
You're still able to place objects outside the output-rectangle.

The output rectangle can be defined and retrieved.
Each page in a document can have its individual output rectangle.
You can define a default output rectangle, which will be used for newly generated pages.

The values for margins are specified in coordinates relative to the top / left paper border, e.g. if
the right margin shall be 2cm away from the right paper border, set it to ‘page_width - 2°. If
you would set the right margin = 2, it would be 2cm away from the left border.

After creating a Document with OpenDoc() the default-rectangle is set to:
left = 2, top = 2, right = page_width - 2, bottom = page_height - 2

The properties to access the output rectangle are:
nLeftMargin, nTopMargin, nRightMargin and nBottomMargin
(DLL: VLEFTMARGIN, VRIGHTMARGIN, VTOPMARGIN, VBOTTOMMARGIN)

The default output rectangle is set with:
SetDefOutRect(LeftMargin, TopMargin, RightMargin, BottomMargin)

On an initial blank page, VLEFT is VLEFTMARGIN, VRIGHT is VRIGHTMARGIN, VTOP
is VTOPMARGIN and VBOTTOM is VTOPMARGIN (!).

All explained V-Flags except VFREE can be used for ALL objects.

Examples:
DLL:

[VpeSet(hDoc, VLEFTMARGIN, 3);

Control:

[<Object>.nLeftMargin = 3;

Sets the left margin of the output rectangle for the current page to 3 cm.

|Write(nLeftMargin, nTopMargin, -5, VFREE, "Hello World!™)

Inserts the text "Hello World!" at the top left corner of the page

36 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

|Write(1600, nTopMargin, nRightMargin, VFREE, "Hello world!')

Text is placed with the right border equal to the right page margin:

|Line(VLEFTMARGIN, VTOPMARGIN, VRIGHTMARGIN, VBOTTOMMARGIN)

Draws a line from the upper left to the lower right corner of the page.

|Write(VLEFTMARGIN, VTOPMARGIN, VRIGHTMARGIN, VFREE, "long text..... ™)

This inserts a text object without frame at position (left margin, top margin) with a width up to
the right margin. Its height (y2) is calculated and depends on the length of the text and the font
size used.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 37

4.5.5 Advanced Dynamic Positioning

Imagine, you created a report. Later you want to change the width of one field in a table. Would
you really want to edit all coordinates of all other fields next to it?

What, if you want to place an object relative to another, but with a gap between them?
You can retrieve and set all coordinates with the functions VpeGet and VpeSet.

Instead of the DLL functions VpeGet and VpeSet, the ActiveX, VCL and .NET Controls offer you
the following n-Properties:

nLeft, nTop, nRight, nBottom, nWidth, nHeight
nLeftMargin, nTopMargin, nRightMargin, nBottomMargin

They relate to the V-Flags, but you can directly use them for offset computations.
They make the use of Dynamic Positioning much more easy and transparent.

The .NET control offers one additional n-Property: nFree, which is equal to VFREE

Examples:
DLL:

[Vpewrite(hDoc, VLEFT, VpeGet(hDoc, VBOTTOM) + 1, VRIGHT, VFREE, “text3™);

Control:

|Doc-Write(VLEFT, Doc.nBottom + 1, VRIGHT, VFREE, "text3");

.NET:

|Doc_Write(Doc_nLeft, Doc.nBottom + 1, Doc.nRight, Doc.nFree, 'text3'™);

Inserts the next text object 1cm below the bottom border of the last inserted object. The left
coordinate and the width of the newly inserted text will be exactly the same of the previously
inserted object, the height of the new text will be computed by VPE.

38 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.5.6 Rendering Objects

In addition to the VFREE-flag, which instructs VPE to render the size of objects when they are
inserted into the document, the rendering methods help to compute the size of text and images
without inserting them into a document. The methods compute the size of text and images in
metric or inch units. The text or image is NOT inserted into the document.

The properties nRenderWidth and nRenderHeight (DLL: VRENDERWIDTH and
VRENDERHEIGHT) contain the appropriate values after the rendering has been executed.

Examples:

RenderWriteBox(VLEFTMARGIN, VTOPMARGIN, VRIGHTMARGIN, VFREE, "a long text
-

Computes the height of the string "a long text ...". The computed height can be retrieved in
nRenderHeight (DLL: VpeGet(hDoc, VRENDERHEIGHT)). You supply all four coordinates to
the RenderWriteBox() method, because the method will also return information, if the text will
fit onto the current page, or if a page break will happen when the text is inserted at the
specified coordinates.

|Doc-RenderPicture(VFREE, VFREE, "..\iImages\fruits.bmp™)

Computes the height and width of the "fruits.bmp” image file. The computed width can be
retrieved in nRenderWidth (DLL: VpeGet(hDoc, VRENDERWIDTH)) and the height can be
retrieved in nRenderHeight (DLL: VpeGet(hDoc, VRENDERHEIGHT)).

The Picture-Flags like PictureCache, PictureBestFit, etc. are also active.

The following command would then insert the image in the center of the page:

Doc.NoPen
Doc.Picture((Doc.PageWidth - Doc.nRenderWidth) / 2, (Doc.PageHeight -
Doc.nRenderHeight) / 2, VFREE, VFREE, ".._.\iImages\fruits.bmp™)

IMPORTANT NOTE:

If the text-output functions are used with VFREE to calculate widths and / or heights, the
calculations need time. The more VPE has to calculate, the slower it works.

If you have for example to output a lot of broken text into single lines with equal fonts and font
sizes - like in a table - it is a good idea to render the height of the line once and to use the
rendered height instead of VFREE.

Virtual Print Engine - Programmer's Manual v4.00 Programming Techniques - 39

Example:

RenderPrint(0, 0, "X'™)
height = nRenderHeight
for page = 1 to 1000
for line = 1 to 18
for column = 1 to 17 step 2
Write(column, line, -2, height, "Hello™)
next column
next line
PageBreak()
next page

is much faster than

for page = 1 to 1000
for line = 1 to 18
for column = 1 to 17 step 2
Write(column, line, -2, VFREE, "Hello')
next column
next line
PageBreak()
next page

where the height of each "Hello" text is computed over and over again.

NOTE: A text drawn with a frame around it requires more width and height than a text without a
frame. Therefore you need to render the width and height of a framed text separately
from text, which is not framed - even if the used fonts and font sizes are the same. Also
a text that is printed in two (or more) lines has a different height than simply multiplying
the height rendered for a single line with the total number of lines, especially if the text is
framed. Therefore you would need to render a text separately, if one or more of the
following properties change:

PenSize (text without a frame has a PenSize of zero)
FontSize

FontName

Number of lines of text to output

The "Report" and "Speed + Tables" demos make use of the technique described above.

40 - Programming Techniques Virtual Print Engine - Programmer's Manual v4.00

4.5.7 Automatic Text Break

This is a ve